Gaussian Mixture Model Classifiers

نویسنده

  • Bertrand Scherrer
چکیده

1.1 Classification Model Before presenting in more details the Gaussian Mixture Model (GMM) classification process, it is worthwhile to consider what “classification” actually means. According to [3], a “classification model” is made of three main parts : • a transducer : in the case of music this would typically be the A/D conversion chain of the sound. • a feature extractor : it extracts significant features from the information coming from the transducer (e.g. the spectral centroid of frames of signal). These features should be chosen in such a way that clear groups or classes of data can be identified. • a classifier : its role is to assign the input data represented by their features to a number of different categories (e.g. different types of instruments).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promoting Diversity in Gaussian Mixture Ensembles: An Application to Signature Verification

Classifiers based on Gaussian mixture models are good performers in many pattern recognition tasks. Unlike decision trees, they can be described as stable classifier: a small change in the sampling of the training set will produce not a large change in the parameters of the trained classifier. Given that ensembling techniques often rely on instability of the base classifiers to produce diverse ...

متن کامل

An Evaluation of Algorithms for Single-Echo Biosonar Target Classification

A recent neuro-spiking coding scheme for feature extraction from biosonar echoes of various plants is examined with a variety of stochastic classifiers. Feature vectors derived are employed in well-known stochastic classifiers, including nearest-neighborhood, single Gaussian and a Gaussian mixture with EM optimization. Classifiers’ performances are evaluated by using cross-validation and bootst...

متن کامل

HMM Speech Recognition with Neural Net Discrimination

Two approaches were explored which integrate neural net classifiers with Hidden Markov Model (HMM) speech recognizers. Both attempt to improve speech pattern discrimination while retaining the temporal processing advantages of HMMs. One approach used neural nets to provide second-stage discrimination following an HMM recognizer. On a small vocabulary task, Radial Basis Function (RBF) and back-p...

متن کامل

Discriminative Gaussian Mixture Models: A Comparison with Kernel Classifiers

We show that a classifier based on Gaussian mixture models (GMM) can be trained discriminatively to improve accuracy. We describe a training procedure based on the extended Baum-Welch algorithm used in speech recognition. We also compare the accuracy and degree of sparsity of the new discriminative GMM classifier with those of generative GMM classifiers, and of kernel classifiers, such as suppo...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Probabilistic classifiers with a generalized Gaussian scale mixture prior

Most of the existing probabilistic classifiers are based on sparsity-inducing modeling. However, we show that sparsity is not always desirable in practice, and only an appropriate degree of sparsity is profitable. In this work, we propose a flexible probabilistic model using a generalized Gaussian scale mixture (GGSM) prior that can provide an appropriate degree of sparsity for its model parame...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007